Search

Search for projects by name

PlayBlock logoPlayBlock

Badges

About

PlayBlock is an Orbit stack Layer 3 on Arbitrum Nova. It is built by the team behind Playnance, and is focused on gasless gaming and gambling.


Value secured
No data
Canonically Bridged
$0.00
Externally Bridged
$0.00
Natively Minted
$0.00

  • Tokens
    No data
  • Past day UOPS
    21.031.26%
  • 30D ops count
    48.82 M

  • Type
    Optimium
  • Purposes
    Universal, Gaming
  • Host chain
    Arbitrum Nova
  • Sequencer failureState validationData availabilityExit windowProposer failure

    Badges

    About

    PlayBlock is an Orbit stack Layer 3 on Arbitrum Nova. It is built by the team behind Playnance, and is focused on gasless gaming and gambling.

    Recategorisation

    133d
    11h
    26m
    55s

    The project will be classified as "Other" due to its specific risks that set it apart from the standard classifications.

    The project will move to Others because:

    There are less than 5 external actors that can submit challenges

    Consequence: projects without a sufficiently decentralized set of challengers rely on few entities to safely update the state. A small set of challengers can collude with the proposer to finalize an invalid state, which can cause loss of funds.

    There are less than 5 external actors that can attest data availability

    Consequence: projects without a sufficiently decentralized data availability committee rely on few entities to safely attest data availability on Ethereum. A small set of entities can collude with the proposer to finalize an unavailable state, which can cause loss of funds.

    Learn more about the recategorisation here.

    Activity
    PlayBlock
    Ethereum
    Risk summary
    There are 6 additional risks coming from the hostchain Arbitrum Nova logoArbitrum Nova
    This project includes unverified contracts. (CRITICAL)
    Fraud proof system is fully deployed but is not yet permissionless as it requires Validators to be whitelisted.
    Risk analysis
    The L3 risks depend on the individual properties of L3 and those of the host chain combined.
    This project includes unverified contracts. (CRITICAL)
    Critical contracts can be upgraded by an EOA which could result in the loss of all funds.
    Fraud proof system is fully deployed but is not yet permissionless as it requires Validators to be whitelisted.
    SEQUENCER
    FAILURE
    STATE
    VALIDATION
    DATA
    AVAILABILITY
    EXIT WINDOWPROPOSER
    FAILURE
    Arbitrum Nova
    L2
    Self sequenceFraud proofs (INT)External (DAC)2dSelf propose
    PlayBlock
    L3 • Individual
    Self sequenceFraud proofs (INT)External (DAC)NoneSelf propose
    PlayBlock
    L3 • Combined
    Self sequenceFraud proofs (INT)External (DAC)NoneSelf propose
    L2 & L3 individual risks
    Sequencer failureState validationData availabilityExit windowProposer failure
    L3 combined risks
    Sequencer failureState validationData availabilityExit windowProposer failure

    L3 combined risks
    The information below reflects combined L2 & L3 risks.

    Sequencer failure

    Self sequence

    In the event of a sequencer failure, users can force transactions to be included in the project’s chain by sending them to L1. There can be up to a 2d delay on this operation.

    State validation

    Fraud proofs (INT)

    No actor outside of the single Proposer can submit fraud proofs. Interactive proofs (INT) require multiple transactions over time to resolve. The challenge protocol can be subject to delay attacks. There is a 30m challenge period.

    Data availability

    External (DAC)

    Proof construction relies fully on data that is NOT published onchain. There exists a Data Availability Committee (DAC) with a threshold of 1/2 that is tasked with protecting and supplying the data.

    Exit window

    None

    There is no window for users to exit in case of an unwanted regular upgrade since contracts are instantly upgradable.

    Proposer failure

    Self propose

    Anyone can become a Proposer after 19d 2h of inactivity from the currently whitelisted Proposers.

    Technology
    The section considers only the L3 properties. For more details please refer to Arbitrum Nova logoArbitrum Nova

    Data is not stored on chain

    Users transactions are not published onchain, but rather sent to external trusted parties, also known as committee members (DAC). Members of the DAC collectively produce a Data Availability Certificate (comprising BLS signatures from a quorum) guaranteeing that the data behind the new transaction batch will be available until the expiry period elapses (currently a minimum of two weeks). This signature is not verified by L1, however external Validators will skip the batch if BLS signature is not valid resulting. This will result in a fraud proof challenge if this batch is included in a consecutive state update. It is assumed that at least one honest DAC member that signed the batch will reveal tx data to the Validators if Sequencer decides to act maliciously and withhold the data. If the Sequencer cannot gather enough signatures from the DAC, it will “fall back to rollup” mode and by posting the full data directly to the L1 chain. The current DAC threshold is 1 out of 2.

    • Funds can be lost if the external data becomes unavailable (CRITICAL).

    • Users can be censored if the committee restricts their access to the external data.

    1. Inside AnyTrust - Arbitrum documentation
    Data availability

    Set of parties responsible for signing and attesting to the availability of data.

    Risk analysis
    DA Layer Risks
    Economic security
    None

    There are no onchain assets at risk of being slashed in case of a data withholding attack, and the committee members are not publicly known.

    Fraud detection
    None

    There is no fraud detection mechanism in place. A data withholding attack can only be detected by nodes downloading the full data from the DA layer.

    DA Bridge Risks
    Committee security
    1/2

    The committee does not meet basic security standards, either due to insufficient size, lack of member diversity, or poorly defined threshold parameters. The system lacks an effective DA bridge and it is reliant on the assumption of an honest sequencer, creating significant risks to data integrity and availability.

    Upgradeability
    No delay

    There is no delay in the upgradeability of the bridge. Users have no time to exit the system before the bridge implementation update is completed.

    Relayer failure
    No mechanism

    The relayer role is permissioned, and the DA bridge does not have a Security Council or a governance mechanism to propose new relayers. In case of relayer failure, the DA bridge will halt and be unable to recover without the intervention of a centralized entity.

    Technology

    Architecture

    Anytrust architecture

    The DAC uses a data availability solution built on the AnyTrust protocol. It is composed of the following components:

    Committee members run servers that support APIs for storing and retrieving data blobs. The Sequencer API allows the rollup Sequencer to submit data blobs for storage, while the REST API enables anyone to fetch data by hash. When the Sequencer produces a data batch, it sends the batch along with an expiration time to Committee members, who store it and sign it. Once enough signatures are collected, the Sequencer aggregates them into a valid DACert and posts it to the L1 chain inbox. If the Sequencer fails to collect enough signatures, it falls back to posting the full data to the L1 chain.

    A DACert includes a hash of the data block, an expiration time, and proof that the required threshold of Committee members have signed off on the data. The proof consists of a hash of the Keyset used in signing, a bitmap indicating which members signed, and a BLS aggregated signature. L2 nodes reading from the sequencer inbox verify the certificate’s validity by checking the number of signers, the aggregated signature, and that the expiration time is at least two weeks ahead of the L2 timestamp. If the DACert is valid, it provides a proof that the corresponding data is available from honest committee members.

    DA Bridge Architecture

    Anytrust bridge architecture

    The DA commitments are posted to the destination chain through the sequencer inbox, using the inbox as a DA bridge. The DA commitment consists of Data Availability Certificate (DACert), including a hash of the data block, an expiration time, and a proof that the required threshold of Committee members have signed off on the data. The sequencer distributes the data and collects signatures from Committee members offchain. Only the DACert is posted by the sequencer to the destination chain inbox (the DA bridge), achieving destination chain transaction ordering finality in a single onchain transaction.

    • Funds can be lost if a malicious committee attests to an invalid data availability certificate.

    • Funds can be lost if the bridge contract or its dependencies receive a malicious code upgrade. There is no delay on code upgrades.

    1. Inside AnyTrust - Arbitrum Docs
    State validation

    Updates to the system state can be proposed and challenged by a set of whitelisted validators. If a state root passes the challenge period, it is optimistically considered correct and made actionable for withdrawals.


    State root proposals

    Whitelisted validators propose state roots as children of a previous state root. A state root can have multiple conflicting children. This structure forms a graph, and therefore, in the contracts, state roots are referred to as nodes. Each proposal requires a stake, currently set to 0.1 ETH, that can be slashed if the proposal is proven incorrect via a fraud proof. Stakes can be moved from one node to one of its children, either by calling stakeOnExistingNode or stakeOnNewNode. New nodes cannot be created faster than the minimum assertion period by the same validator, currently set to 15m. The oldest unconfirmed node can be confirmed if the challenge period has passed and there are no siblings, and rejected if the parent is not a confirmed node or if the challenge period has passed and no one is staked on it.

    • Funds can be stolen if none of the whitelisted verifiers checks the published state. Fraud proofs assume at least one honest and able validator (CRITICAL).

    1. How is fraud proven - Arbitrum documentation FAQ
    Challenges

    A challenge can be started between two siblings, i.e. two different state roots that share the same parent, by calling the startChallenge function. Validators cannot be in more than one challenge at the same time, meaning that the protocol operates with partial concurrency. Since each challenge lasts 30m, this implies that the protocol can be subject to delay attacks, where a malicious actor can delay withdrawals as long as they are willing to pay the cost of losing their stakes. If the protocol is delayed attacked, the new stake requirement increases exponentially for each challenge period of delay. Challenges are played via a bisection game, where asserter and challenger play together to find the first instruction of disagreement. Such instruction is then executed onchain in the WASM OneStepProver contract to determine the winner, who then gets half of the stake of the loser. As said before, a state root is rejected only when no one left is staked on it. The protocol does not enforces valid bisections, meaning that actors can propose correct initial claim and then provide incorrect midpoints.

    1. Fraud Proof Wars: Arbitrum Classic
    Operator
    The section considers only the L3 properties. For more details please refer to Arbitrum Nova logoArbitrum Nova

    The system has a centralized sequencer

    While forcing transaction is open to anyone the system employs a privileged sequencer that has priority for submitting transaction batches and ordering transactions.

    • MEV can be extracted if the operator exploits their centralized position and frontruns user transactions.

    1. Sequencer - Arbitrum documentation

    Users can force any transaction

    Because the state of the system is based on transactions submitted on the underlying host chain and anyone can submit their transactions there it allows the users to circumvent censorship by interacting with the smart contract on the host chain directly. After a delay of 1d in which a Sequencer has failed to include a transaction that was directly posted to the smart contract, it can be forcefully included by anyone on the host chain, which finalizes its ordering.

    1. SequencerInbox.sol - source code, forceInclusion function
    2. Sequencer Isn’t Doing Its Job - Arbitrum documentation
    Withdrawals
    The section considers only the L3 properties. For more details please refer to Arbitrum Nova logoArbitrum Nova

    Regular messaging

    The user initiates L2->L1 messages by submitting a regular transaction on this chain. When the block containing that transaction is settled, the message becomes available for processing on L1. The process of block finalization usually takes several days to complete.

    1. Transaction lifecycle - Arbitrum documentation
    2. L2 to L1 Messages - Arbitrum documentation
    3. Mainnet for everyone - Arbitrum Blog

    Tradeable Bridge Exit

    When a user initiates a regular withdrawal a third party verifying the chain can offer to buy this withdrawal by paying the user on L1. The user will get the funds immediately, however the third party has to wait for the block to be finalized. This is implemented as a first party functionality inside Arbitrum’s token bridge.

    1. Tradeable Bridge Exits - Arbitrum documentation

    Autonomous exit

    Users can (eventually) exit the system by pushing the transaction on L1 and providing the corresponding state root. The only way to prevent such withdrawal is via an upgrade.

    Other considerations

    EVM compatible smart contracts are supported

    Arbitrum One uses Nitro technology that allows running fraud proofs by executing EVM code on top of WASM.

    • Funds can be lost if there are mistakes in the highly complex Nitro and WASM one-step prover implementation.

    1. Inside Arbitrum Nitro
    Permissions

    Arbitrum Nova

    Actors:

    Sequencers 0xe603…Cc5b

    Central actors allowed to submit transaction batches to L1.

    Validators/Proposers 0x76a1…b827

    They can submit new state roots and challenge state roots. Some of the operators perform their duties through special purpose smart contracts.

    RollupOwnerEOA 0x10Fe…a45a

    This address has the Executor role and can upgrade the rollup contracts (via ProxyAdmin) without delay, potentially stealing all funds.

    Smart contracts
    A diagram of the smart contract architecture
    A diagram of the smart contract architecture

    Arbitrum Nova

    ProxyAdmin 0x27C7…6c91

    This contract can upgrade the implementations of the rollup proxies. The source code of this contract is not verified on Etherscan.

    Main contract implementing Arbitrum One Rollup. Manages other Rollup components, list of Stakers and Validators. Entry point for Validators creating new Rollup Nodes (state commits) and Challengers submitting fraud proofs. The source code of this contract is not verified on Etherscan.

    Contract managing Inboxes and Outboxes. It escrows the native token used for gas on the chain. This contract stores the following tokens: ETH.

    Main entry point for the Sequencer submitting transaction batches. The source code of this contract is not verified on Etherscan.

    Entry point for users depositing ETH and sending L1 -> L2 messages.

    Contract that allows L2->L1 calls, i.e. messages initiated on L2 which eventually resolve in execution on L1.

    Contract allowed to upgrade the system.

    Contract that allows challenging invalid state roots. Can be called through the RollupProxy.

    OneStepProofEntry 0x944d…99cB

    Contract used to perform the last step of a fraud proof.

    OneStepProverMemory 0xfaD0…6c08

    Contract used to perform the last step of a fraud proof.

    OneStepProverMath 0x2964…8921

    Contract used to perform the last step of a fraud proof.

    OneStepProverHostIo 0x77E1…F017

    Contract used to perform the last step of a fraud proof.

    OneStepProver0 0x19bD…8c16

    Contract used to perform the last step of a fraud proof.

    Value Secured is calculated based on these smart contracts and tokens:

    Contract managing Inboxes and Outboxes. It escrows ETH sent to L2.

    Can be upgraded by:

    Upgrade delay: No delay

    The current deployment carries some associated risks:

    • Funds can be stolen if a contract receives a malicious code upgrade. There is no delay on code upgrades (CRITICAL).

    • Funds can be stolen if the source code of unverified contracts contains malicious code (CRITICAL).