Public Goods Network logoPublic Goods Network

Badges

About

Public Goods Network is an OP stack chain focused on funding public goods.


Value Locked

$553.61 K

3.13%

Canonically Bridged
$553.61 K
Externally Bridged
$0.00
Natively Minted
$0.00

  • Tokens
  • Daily TPS
    0.00100.00%
  • 30D tx count
    2.37 K

  • Type
    Optimium
  • Purpose
    Universal
  • Sequencer failureState validationData availabilityExit windowProposer failure

    Badges

    About

    Public Goods Network is an OP stack chain focused on funding public goods.


    Value Locked
    Activity
    Milestones & Incidents

    PGN switches to Celestia

    2024 Jan 26th

    Public Goods Network Launch

    2023 Jul 6th

    The Public Goods Network is live on mainnet.

    Learn more
    Risk summary
    Fraud proof system is currently under development. Users need to trust the block proposer to submit correct L1 state roots.
    Risk analysis
    Fraud proof system is currently under development. Users need to trust the block proposer to submit correct L1 state roots.
    Sequencer failureState validationData availabilityExit windowProposer failure

    Sequencer failure

    Self sequence

    In the event of a sequencer failure, users can force transactions to be included in the project’s chain by sending them to L1. There is a 12h delay on this operation.

    State validation

    In development

    Currently the system permits invalid state roots. More details in project overview.

    Data availability

    External

    Proof construction and state derivation fully rely on data that is posted on Celestia. Sequencer tx roots are not checked against the Blobstream bridge data roots onchain, but L2 nodes can verify data availability by running a Celestia light client.

    Exit window

    None

    There is no window for users to exit in case of an unwanted regular upgrade since contracts are instantly upgradable.

    Proposer failure

    Cannot withdraw

    Only the whitelisted proposers can publish state roots on L1, so in the event of failure the withdrawals are frozen.

    Technology

    Fraud proofs are in development

    Ultimately, OP stack chains will use interactive fraud proofs to enforce state correctness. This feature is currently in development and the system permits invalid state roots.

    • Funds can be stolen if an invalid state root is submitted to the system (CRITICAL).

    1. L2OutputOracle.sol - Etherscan source code, deleteL2Outputs function

    Data is stored on Celestia

    Transactions roots are posted onchain and the full data is posted on Celestia. Since the Blobstream bridge is not used, availability of the data is not verified against Celestia validators, meaning that the Sequencer can single-handedly publish unavailable roots.

    • Funds can be lost if the sequencer posts an unavailable transaction root (CRITICAL).

    • Funds can be lost if the data is not available on the external provider (CRITICAL).

    1. Introducing Blobstream: streaming modular DA to Ethereum
    2. Derivation: Batch submission - OP Mainnet specs
    3. BatchInbox - Etherscan address
    4. OptimismPortal.sol - Etherscan source code, depositTransaction function
    State derivation
    Node software

    The rollup node is composed of two software components: op-node, implementing consensus related logic, and op-geth, implementing execution logic. The configuration file can be found here.

    Compression scheme

    Data batches are compressed using the zlib algorithm with best compression level.

    Genesis state

    The genesis file can be found here.

    Data format

    The format specification of Sequencer’s data batches can be found here.

    Operator

    The system has a centralized operator

    The operator is the only entity that can propose blocks. A live and trustworthy operator is vital to the health of the system.

    • MEV can be extracted if the operator exploits their centralized position and frontruns user transactions.

    1. L2OutputOracle.sol - Etherscan source code, CHALLENGER address
    2. L2OutputOracle.sol - Etherscan source code, PROPOSER address
    3. Decentralizing the sequencer - OP Stack docs

    Users can force any transaction

    Because the state of the system is based on transactions submitted on the underlying host chain and anyone can submit their transactions there it allows the users to circumvent censorship by interacting with the smart contract on the host chain directly.

    1. Sequencing Window - OP Mainnet Specs
    2. OptimismPortal.sol - Etherscan source code, depositTransaction function
    Withdrawals

    Regular exit

    The user initiates the withdrawal by submitting a regular transaction on this chain. When the block containing that transaction is finalized the funds become available for withdrawal on L1. The process of block finalization takes a challenge period of 7d to complete. Finally the user submits an L1 transaction to claim the funds. This transaction requires a merkle proof.

    • Funds can be frozen if the centralized validator goes down. Users cannot produce blocks themselves and exiting the system requires new block production (CRITICAL).

    1. OptimismPortal.sol - Etherscan source code, proveWithdrawalTransaction function
    2. OptimismPortal.sol - Etherscan source code, finalizeWithdrawalTransaction function
    3. L2OutputOracle.sol - Etherscan source code, PROPOSER check

    Forced exit

    If the user experiences censorship from the operator with regular exit they can submit their withdrawal requests directly on L1. The system is then obliged to service this request or halt all withdrawals, including forced withdrawals from L1 and regular withdrawals initiated on L2. Once the force operation is submitted and if the request is serviced, the operation follows the flow of a regular exit.

    1. Forced withdrawal from an OP Stack blockchain
    Other considerations

    EVM compatible smart contracts are supported

    OP stack chains are pursuing the EVM Equivalence model. No changes to smart contracts are required regardless of the language they are written in, i.e. anything deployed on L1 can be deployed on L2.

    1. Introducing EVM Equivalence
    Permissions

    The system uses the following set of permissioned addresses:

    ProxyAdmin 0xc6A8…4cc4

    Owner of AddressManager. Admin of OptimismPortal, SystemConfig, L2OutputOracle, L1StandardBridge.

    Sequencer 0x9952…e167

    Central actor allowed to commit L2 transactions to L1.

    Proposer 0x6996…cFe3

    Central actor allowed to post new L2 state roots to L1.

    Challenger 0x39E1…5f84

    Central actor allowed to delete L2 state roots proposed by a Proposer.

    Guardian 0x39E1…5f84

    Central actor allowed to pause deposits and withdrawals.

    ConduitMultisig 0x4a49…A746

    This is a Gnosis Safe with 4 / 7 threshold. This address is the owner of the following contracts: SystemConfig, ProxyAdmin. It can upgrade the bridge implementation potentially gaining access to all funds, and change the sequencer, state root proposer or any other system component (unlimited upgrade power).

    Used in:

    Those are the participants of the ConduitMultisig.

    GuardianMultisig 0x39E1…5f84

    This is a Gnosis Safe with 3 / 6 threshold. This address is the permissioned challenger of the system. It can delete non finalized roots without going through the fault proof process. It is also designated as a Guardian of the OptimismPortal, meaning it can halt withdrawals.

    Those are the participants of the GuardianMultisig.

    Smart contracts
    A diagram of the smart contract architecture
    A diagram of the smart contract architecture

    The system consists of the following smart contracts on the host chain (Ethereum):

    The L2OutputOracle contract contains a list of proposed state roots which Proposers assert to be a result of block execution. Currently only the PROPOSER address can submit new state roots.

    Can be upgraded by:

    Upgrade delay: No delay

    The OptimismPortal contract is the main entry point to deposit funds from L1 to L2. It also allows to prove and finalize withdrawals. This contract stores the following tokens: ETH.

    Can be upgraded by:

    Upgrade delay: No delay

    It contains configuration parameters such as the Sequencer address, the L2 gas limit and the unsafe block signer address.

    Can be upgraded by:

    Upgrade delay: No delay

    The L1CrossDomainMessenger (L1xDM) contract sends messages from L1 to L2, and relays messages from L2 onto L1. In the event that a message sent from L1 to L2 is rejected for exceeding the L2 epoch gas limit, it can be resubmitted via this contract’s replay function.

    Can be upgraded by:

    Upgrade delay: No delay

    The L1StandardBridge contract is the main entry point to deposit ERC20 tokens from L1 to L2. This contract can store any token.

    Can be upgraded by:

    Upgrade delay: No delay

    Value Locked is calculated based on these smart contracts and tokens:

    Main entry point for users depositing ERC20 token that do not require custom gateway.

    Can be upgraded by:

    Upgrade delay: No delay

    Main entry point for users depositing ETH.

    Can be upgraded by:

    Upgrade delay: No delay

    The current deployment carries some associated risks:

    • Funds can be stolen if a contract receives a malicious code upgrade. There is no delay on code upgrades (CRITICAL).

    Knowledge nuggets